Effects of ethanol on tonic GABA currents in cerebellar granule cells and mammalian cells recombinantly expressing GABA(A) receptors.
نویسندگان
چکیده
The effects of ethanol on the GABA(A) receptors, which are regarded as one of the most important target sites of ethanol, are very controversial, ranging from potentiation to no effect. The delta subunit-containing GABA(A) receptors expressed in Xenopus oocytes were recently reported to be potently augmented by ethanol. We performed patch-clamp experiments using the cerebellar granule cells and mammalian cells expressing recombinant GABA(A) receptors. In granule cells, the sensitivity to GABA increased from 7 to 11 days in vitro. Furosemide, an antagonist of alpha6-containing GABA(A) receptors, inhibited GABA-induced currents more potently at 11 to 14 days than at 7 days. Ethanol at 30 mM had either no effect or an inhibitory effect on currents induced by low concentrations of GABA in granule cells. On alpha4beta2delta, alpha6beta2delta, or alpha6beta3deltaGABA(A) receptors expressed in Chinese hamster ovary cells, ethanol at 10, 30, and 100 mM had either no effect or an inhibitory effect on GABA currents. Ethanol inhibition of GABA(A) receptor was observed in all of the subunit combinations examined. In contrast, the perforated patch-clamp method to record the GABA currents revealed ethanol effects on the alpha6beta2delta subunits ranging from slight potentiation to slight inhibition. Ethanol seems to exert a dual action on the GABA(A) receptors and the potentiating action may depend on intracellular milieu. Thus, the differences between the GABA(A) receptors expressed in mammalian host cells and those in Xenopus oocytes in the response to ethanol might be due to changes in intracellular components under patch-clamp conditions.
منابع مشابه
Selective modulation of tonic and phasic inhibitions in dentate gyrus granule cells.
In some nerve cells, activation of GABA(A) receptors by GABA results in phasic and tonic conductances. Transient activation of synaptic receptors generates phasic inhibition, whereas tonic inhibition originates from GABA acting on extrasynaptic receptors, like in cerebellar granule cells, where it is thought to result from the activation of extrasynaptic GABA(A) receptors with a specific subuni...
متن کاملDifferential effects of methylmercury on gamma-aminobutyric acid type A receptor currents in rat cerebellar granule and cerebral cortical neurons in culture.
Cerebellar granule cells are particularly sensitive to inhibition by methylmercury (MeHg) on GABA(A) receptor function. This is manifested as a more rapid block of inhibitory postsynaptic currents/inhibitory postsynaptic potentials than for Purkinje cells. The underlying mechanism(s) for differential sensitivity of GABAergic transmission to MeHg in cerebellar neurons is unknown. Differential ex...
متن کاملEthanol sensitivity of GABAergic currents in cerebellar granule neurons is not increased by a single amino acid change (R100Q) in the alpha6 GABAA receptor subunit.
Cerebellar granule neurons (CGNs) extrasynaptically express GABA(A) receptors containing alpha(6)beta(x)delta subunits, which mediate tonic inhibitory currents. Although it has been shown that the function of these receptors is potently and directly enhanced by ethanol, this finding has not been reproducible across different laboratories. In outbred Sprague-Dawley rats, a naturally occurring ar...
متن کاملA Reinforcing Circuit Action of Extrasynaptic GABAA Receptor Modulators on Cerebellar Granule Cell Inhibition
GABAA receptors (GABARs) are the targets of a wide variety of modulatory drugs which enhance chloride flux through GABAR ion channels. Certain GABAR modulators appear to acutely enhance the function of δ subunit-containing GABAR subtypes responsible for tonic forms of inhibition. Here we identify a reinforcing circuit mechanism by which these drugs, in addition to directly enhancing GABAR funct...
متن کاملInhibition of constitutive inward rectifier currents in cerebellar granule cells by pharmacological and synaptic activation of GABA receptors.
gamma-Aminobutyric acid (GABA)(B) receptors are known to enhance activation of Kir3 channels generating G-protein-dependent inward rectifier K(+)-currents (GIRK). In some neurons, GABA(B) receptors either cause a tonic GIRK activation or generate a late K(+)-dependent inhibitory postsynaptic current component. However, other neurons express Kir2 channels, which generate a constitutive inward re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 319 1 شماره
صفحات -
تاریخ انتشار 2006